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Surface granular flow, comprising granular material flowing on the surface of a
heap of the same material, occurs in several industrial and natural systems. The
rheology of such a flow was investigated by means of measurements of velocity
and number-density profiles in a quasi-two-dimensional rotating cylinder, half-filled
with a model granular material – monosize spherical stainless-steel particles. The
measurements were made at the centre of the cylinder, where the flow is fully
developed, using streakline photography and image analysis. The stress profile was
computed from the number-density profile using a force balance which takes into
account wall friction. Mean-velocity and root-mean-square (r.m.s.)-velocity profiles
are reported for different particle sizes and cylinder rotation speeds. The profiles for
the mean velocity superimpose when distance is scaled by the particle diameter d and
velocity by a characteristic shear rate γ̇C = [g sin(βm −βs)/d cos βs]

1/2 and the particle
diameter, where βm is the maximum dynamic angle of repose and βs is the static angle
of repose. The maximum dynamic angle of repose is found to vary with the local
flow rate. The scaling is also found to work for the r.m.s. velocity profiles. The mean
velocity is found to decay exponentially with depth in the bed, with decay length
λ = 1.1d . The r.m.s. velocity shows similar behaviour but with λ = 1.7d . The r.m.s.
velocity profile shows two regimes: near the free surface the r.m.s. velocity is nearly
constant and below a transition point it decays linearly with depth. The shear rate,
obtained by numerical differentiation of the velocity profile, is not constant anywhere
in the layer and has a maximum which occurs at the same depth as the transition
in the r.m.s. velocity profile. Above the transition point the velocity distributions are
Gaussian and below the transition point the velocity distributions gradually approach
a Poisson distribution. The shear stress increases roughly linearly with depth. The
variation in the apparent viscosity η with r.m.s. velocity u shows a relatively sharp
transition at the shear-rate maximum, and in the region below this point the apparent
viscosity η ∼ u−1.5. The measurements indicate that the flow comprises two layers:
an upper low-viscosity layer with a nearly constant r.m.s. velocity and a lower layer
of increasing viscosity with a decreasing r.m.s. velocity. The thickness of the upper
layer depends on the local flow rate and is independent of particle diameter while
the reverse is found to hold for the lower-layer thickness. The experimental data is
compared with the predictions of three models for granular flow.

1. Introduction
Surface flows of granular materials comprise a shallow layer of particles flowing

on a fixed bed (heap) of the same particles. Such flows are encountered in several
industrial operations as well as in nature. Industrial examples appear in the processing
of material in systems such as rotary kilns (Peray 1986) and tumbling mixers (Perry &



2 A. V. Orpe and D. V. Khakhar

Green 1997), in the formation of heaps for storage and in the feeding and discharge
of hoppers and silos (Nedderman 1992). Natural examples are the formation of sand
dunes (Andreotti, Claudin & Douady 2002a , b; Wang & Zheng 2004), avalanches
(Hutter, Koch & Savage 1995; Hutter 1997) and the transport of sediment in rivers
(Bounhoure, Brunet & Merlen 2002).

Surface granular flows have one unique feature that differentiates them from other
granular shear flows. The ‘boundary’ between the flowing particles and the fixed bed is
determined by the flow itself. A consequence is that interchange of particles between
the flowing layer and the bed is possible, and the local surface angle and the local
layer thickness vary with the local flow. Although it is reasonable to picture the flow
in terms of two distinct regions (a flowing layer and a fixed bed) separated by a sharp
interface, in fact the boundary is diffuse and the flow decays to zero exponentially
with depth. Thus a homogeneous and responsive boundary exists at the base of the
flow which is quite different in qualitative terms from a flow on an inclined rough
surface. Several studies have been carried out to understand the physics of surface
granular flows and a review of the previous work is given below.

Rotating cylinders and heaps have been the primary systems used for the
experimental study of surface granular flows. In both systems, the major component
of the velocity is parallel to the surface and the velocity profile is found to be
broadly linear across the layer (Nakagawa et al. 1993; Rajchenbach, Clement &
Duran 1995; Bonamy, Daviaud & Laurent 2002a; Jain, Ottino & Lueptow 2002;
Longo & Lamberti 2002; Taberlet et al. 2003; Orpe & Khakhar 2004). Komatsu
et al. (2001) showed the decay of the velocity to be exponential with depth and this
has been confirmed in several subsequent studies (Jain et al. 2002; Bonamy et al.
2002a; Longo & Lamberti 2002; Taberlet et al. 2003; Orpe & Khakhar 2004). The
flux in the region of exponential decay is relatively small and there has been a
focus on the shear rate corresponding to the linear part. Some studies show that the
shear rate is nearly constant and independent of the local mass-flow rate, particularly
for low mass-flow rates and near-two-dimensional systems (Rajchenbach et al. 1995;
Khakhar et al. 2001a; Bonamy et al. 2002a). In other cases the shear rate is found
to increase with flow rate (Orpe & Khakhar 2001; Jain et al. 2002). The bulk density
is nearly constant across the layer and approaches close packing (Rajchenbach et al.
1995; Bonamy et al. 2002a; Jain et al. 2002; Orpe & Khakhar 2004), indicating the
highly dissipative nature of the flow.

The surface angle β is found to increase with mass-flow rate in the layer (Khakhar
et al. 2001a; Orpe & Khakhar 2001); however, in these and similar studies the
measurements were made near a wall. Recently Taberlet et al. (2003) showed a
systematic effect of the wall on the surface angle. They found that the measured
increase in angle with flow rate in heap-flow experiments could be accounted for
by considering the effect of wall friction in a force balance. The analysis yields
tan β = µi + µwδ/b, where δ is the layer thickness, b is the gap width, µi is the
effective coefficient of friction and µw is the coefficient of friction between the
particles and wall. Thus for sufficiently wide gaps (δ/b � 1) a constant surface angle
should be obtained. This was indeed observed by Jop, Forterre & Pouliquen (2005)
in a systematic experimental study of the effect of gap width on heap flow. They
found that the gap width between the side walls also affects the mean velocity and the
depth of the flowing layer. As the gap width is increased the surface angle decreases,
the mean velocity decreases and the depth of the flowing layer increases. The rate of
increase in surface angle with flow rate reduces with the gap width, and at the highest
gap width considered (570 particle diameters) the surface angle is nearly independent
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of the flow rate. Down-channel velocity profiles measured at the free surface indicate
that the range of the ‘wall effect’ extends to a greater distance from each wall with
increasing gap width, even when the lengths are scaled by the gap width. This,
however, may be a reflection of the fact that the flow rate varies significantly across
the gap. Courrech-DuPont et al. (2005) measured the instantaneous velocity profiles
during an avalanche in a rotating cylinder. The profiles obtained at different times
at the centre of the cylinder were self-similar and had an exponential dependence
on the depth. The linear part of the profile, found for steady flows, was not seen.
Jain et al. (2002) reported measurements of the granular temperature, which is an
important input in some models for the flow. The qualitative features of the flow
remain unchanged even when the particles are completely immersed in a liquid
(Jain, Ottino & Lueptow 2004). The flow in a two-dimensional rotating cylinder and
its rheology were studied by Renouf et al. (2005) by means of contact-dynamics
simulations.

The simplest models for surface flow comprise a depth-averaged mass-balance
equation in the flowing layer with a phenomenological equation for the flux from the
bed to the layer that is assumed to be determined by the local angle of the surface
(Bouchaud et al. 1994; Mehta 1994; Boutreux & de Gennes 1996; Boutreux, Raphaël
& de Gennes 1998). More detailed depth-averaged continuum models also yield
similar equations (Khakhar et al. 1997; Douady, Andreotti & Daerr 1999; Khakhar
et al. 2001a) and agree well with the experimental results (Khakhar et al. 2001a , b).
The main difference in these models is the stress constitutive equation used. One
approach is to assume the shear rate to be a known constant; this eliminates the need
for the stress constitutive equation (Douady et al. 1999; Makse 1999). Rajchenbach
(2003) gave a physical justification for a constant shear rate based on the assumption
that a single collision entirely dissipates the momentum of both colliding particles.
This yields an estimate for the shear rate as γ̇ ∼ (g sinβ/d)1/2, where β is the local
surface angle of flow, d is the particle diameter and g is the acceleration due to
gravity. Such an approach gives good predictions of the experimental results for
rotating-cylinder flow at low rotational speeds (Makse 1999). A phenomenological
equation for the stress based on frictional and collisional contributions (Khakhar
et al. 1997; Orpe & Khakhar 2001; Khakhar et al. 2001a) gives a somewhat different
expression for the shear rate,

γ̇ =

[
g sin(βm − βs)

cd cos βs

]1/2

, (1.1)

where βm is the maximum dynamic angle of repose, βs is the static angle of repose
and c is a constant. In the context of the model, βm is the free surface angle for a
steady fully developed flow with no interchange and corresponds to the neutral angle
of the BRdG model (Boutreux et al. 1998). As we shall see below, βm is not a material
property and varies with the local flow rate. The continuum model based on the
phenomenological stress equation gives good predictions of the layer-thickness profile
and the shear rate for both heap flows (Khakhar et al. 2001a) and rotating cylinder
flows (Orpe & Khakhar 2001). The model predicts a nearly constant shear rate at
low flow rates (Khakhar et al. 2001 b). We note that (1.1) relates to the analysis of
Quartier et al. (2000) for the motion of a single particle down a bumpy inclined plane.
If the effective acceleration proposed by Quartier et al. (2000) is considered together
with the particle diameter as a length scale, a scaling analysis yields an expression
similar to (1.1) for the shear rate.
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More detailed rheological models for the dense granular flow typical of surface flows
have also been proposed, based on different approaches. Savage (1998) developed a
kinetic theory based on strain-rate fluctuations that are related to the granular
temperature. The resulting governing equations contain a viscosity term that shows
a decrease with an increase in the granular temperature, similar to that for a liquid.
Bocquet et al. (2001) modified granular kinetic-theory equations to give a sharper
increase in the granular viscosity with the solid-volume fraction. The model gave
good predictions of the velocity profile in a Couette flow. A two-phase solid–liquid
model was proposed by Aranson & Tsimring (2002), the fraction of the solid phase
present locally being determined by an order parameter. This model is described in
more detail in § 3.4 and its predictions are compared with the experimental results.
Josserand, Lagree & Lhuillier (2004) proposed a continuum model based on stress
constitutive equations which depend on the local volume fraction. The model gives
a reasonable qualitative description of surface flows. Dense granular flows have also
been described by Cosserat-type constitutive models in which local couple-stresses
due to particle rotations are taken into account. A Cosserat model was proposed by
Mohan, Nott & Rao (2002) and predictions of the model for the velocity profile were
shown to be in good agreement with measurements in a vertical channel flow and in
a dense Couette flow. Recently Pouliquen and coworkers (MiDi 2004; Jop et al. 2005)
proposed that the local shear stress in a granular flow may be expressed in terms of
a shear-rate (γ̇ ) dependent effective friction coefficient of the following form:

µ = µs +
µ2 − µs

I0/I + 1
, (1.2)

where I = dγ̇ (P/ρp)1/2 is the dimensionless shear rate with ρp the particle density
and P the granular pressure; µs , µ2 and I0 are model parameters. The model is
found to work well for flow on a rough inclined plane and for heap flow (Jop et al.
2005). We shall compare our experimental results with this model as well. Numerical
simulations in two-dimensions (Renouf et al. 2005; DaCruz et al. 2005) have also
shown I to be a useful parameter for describing granular rheology.

All the models discussed above are based on a local stress constitutive equation. The
high density of the flow results in multiparticle contacts and thus there is a distinct
possibility of non-local transfer of stresses. Several theories have explored such ideas.
Pouliquen, Forterre & Le Dizes (2001) considered stress transfer by fluctuations in
the bed. The fluctuations decay with distance from their point of origin. The model
gives good predictions of data for dense flows in vertical and inclined channels. Mills,
Loggia & Tixier (1999) and Bonamy & Mills (2003) considered dense shear flows
in which near-vertical particle chains are formed by gravity forces. The model gives
good predictions of measured velocity profiles. The predictions of this model are also
compared with our experimental data below.

The rheology of surface granular flows has not been experimentally explored in
detail as yet and is the focus of the present work. Our objective was to carry out an
experimental study and analysis of the flow and rheology of a steady fully developed
surface granular flow. A quasi-two-dimensional rotating-cylinder system (gap width
5–10 particle diameters) was used and the measurements were made in the region
near the cylinder axis where the flow is fully developed and steady. Experiments were
carried out over a range of particle sizes and rotational speeds, and the data were
analyzed by scaling and comparison with existing models. Section 2 gives the details
of the experimental system and methods used. The results are discussed in § 3 and
are followed by our conclusions in § 4.
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Material Diameter d (mm) Mass m (mg) Particle density Bulk density Young’s
ρp , (kg m3) ρb , (kg m3) modulus (GPa)

1 4.2 ± 0.06 4973
Stainless steel 2 33.5 ± 0.18 8000 4899 200

3 112.5 ± 0.18 4725

Brass 2 35.0 ± 0.25 8500 5205 120

Table 1. Geometrical and physical properties of the particles used in the experiments.
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Figure 1. Schematic view of the flow in a rotating cylinder, comprising a surface-flowing layer
of thickness δ(x) and a packed bed of particles rotating with the cylinder. The coordinate
system employed in the analysis is shown.

2. Experimental details
We first describe the experimental system used for this work. The experimental

method, based on digital photography, is discussed next and then a description of the
technique used for analyzing the digital images follows.

2.1. System

The experiments were carried out in quasi-two-dimensional aluminium cylinders
(length b = 1 or 2 cm) of radius 16 cm. The end walls were made of glass to enable
visualization of the particle motion. A computer-controlled stepper motor with a
sufficiently small step was used to rotate the cylinders. Stainless steel (SS) balls of
three different sizes with diameters (d) 1, 2, and 3 mm were used in the experiments.
A few experiments were carried out using 2 mm brass balls to investigate the effect
of material characteristics. Brass is a heavier and softer material as compared to SS.
The properties of all the particles used are listed in table 1. All the particles used in
the experiments were accurately spherical in shape (the SS balls are the type used
as ball bearings). The surfaces of all the particles were smooth and reflective; this
facilitated the image-analysis method used in this work. Table 1 indicates that the
bulk density is higher for the smaller particles. This is a result of the lower packing
density near the walls for all the particles. Since the gap width b is the same in all
cases, the fraction of particles in the wall region is smaller for the smaller particles
resulting in a higher overall bulk density.

Experiments were carried out at different rotational speeds (ω = 2−9 r.p.m.) such
that the flow was always in the rolling regime. The typical flow pattern, comprising
a surface-flowing layer of varying thickness δ(x) and the bed rotating at the angular
speed of the drum, ω, is shown schematically in figure 1. The particles are heavy
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Figure 2. Flow of SS balls of diameter 2 mm for an angular speed ω of 3 r.p.m. Streaks
correspond to the particle displacement during the time the shutter is open, �t = 1/500 s. The
coordinates x,y correspond to a y-axis along the free surface of the flowing layer, while X,Y
are the coordinates in the laboratory reference frame.

enough and sufficiently conductive that static-charge effects are negligible. All the
experiments were carried out with the cylinder half-full of particles (i.e. a fill fraction
of 50 %).

2.2. Experimental method

The measurements in the flowing layer were made near the centre of the cylinder
(x = 0, in figure 1), where the layer thickness is a maximum and the flow is nearly
unidirectional and non-accelerating (the velocity is nearly invariant in the x-direction).
The images were taken keeping the camera close to the face plate of the cylinder and
framing a small region of the flow. The size of the recorded region was 2560 × 1920
pixels; one pixel corresponded to 0.016−0.03 mm, depending on the distance of the
camera from the cylinder. A point source of light was directed nearly parallel to
the face plate of the cylinder so as to illuminate only the front layer of the flowing
particles. Owing to the high sphericity and the polished surface of the particles, a
well-defined reflection is produced from each stationary particle (see figure 2, lower
right corner). Each moving particle generates a streak of definite length depending
on its speed and the shutter speed of the camera. Figure 2 shows a typical image
with streaks of different lengths in the flowing layer. The velocity of each particle is
determined from the length and orientation of the streak formed; the analysis method
is explained in § 2.3. This method of velocity determination is similar to that used by
Rajchenbach et al. (1995).

Images were taken for a range of camera shutter speeds (1/15 − 1/1000 s) so as to
account for the varying velocity across the flowing layer. About 100 images were taken
for each shutter speed with a total of 1000 images combined over different shutter
speeds. Each experiment was carried out for about 500 revolutions, two images being
taken per revolution. Thus the flow was sampled over a considerable time period
(∼ 3 h). The images were analysed to determine the velocity and number-density
profiles across the layer.

2.3. Image analysis

The image-analysis technique involved identification of the streaks in the front layer
followed by determination of the length and the orientation of each identified streak.
Computer codes were written to manipulate and analyse the digital images. Details
are given below.
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Figure 3. Image analysis of streaks. (a) Original image of the streaks. (b) Thresholded streaks
with pixels identified in each streak. (c) Fitting of the function (2.1) to one streak. X, Y are
the coordinates in the laboratory reference frame. (Xc, Yc) is the position of the streak in this
frame of reference. 2l and 2w are the length and width of the streak, respectively. θ is the
orientation of the streak to the horizontal.

Each image is first converted to black and white by putting the intensity values of
pixels greater than a certain threshold to white and the rest to black. The threshold
was chosen so that the streaks from the front layer are converted to white and the
streaks in the back layers, which are less illuminated, to black. All the photographs
were taken with a black background so as to make the thresholding easier. The
thresholded image is scanned row by row to identify clusters of contiguous white
pixels. Clusters smaller than a specified size (75 pixels) are due to reflection of the
light from the periphery of the particle surface and are eliminated. Clusters larger
than this size are taken to be streaks. Figure 3(a) shows three magnified streaks in
the front layer and a number of faint streaks from the back layers. Figure 3(b) shows
the thresholded image with the faint streaks eliminated.

In the next stage of the analysis, the position, length and angle of each streak is
determined by fitting a parameterized intensity function to the intensity values of the
streak pixels (and an immediate neighbourhood) in the original image. An intensity
function of the following form is used:

Ith =

{
Ce−ȳ2/4w2

, |x̄| � l, (2.1a)

Ce[−ȳ2−(x̄−l)2]/4w2

, |x̄| > l, (2.1b)

where x̄ = (X − Xc) cos θ + (Y − Yc) sin θ , ȳ = (Y − Yc) cos θ − (X − Xc) sin θ , 2l is
the nominal length of the streak, 2w is the nominal width of the streak, θ is the
orientation of the streak to the horizontal and C is the maximum intensity value
obtained at the centroid of the streak. (Xc, Yc) is the position of the centroid of the
streak in laboratory coordinates (figure 3c).

Initial estimates of the position (Xc, Yc), length 2l, width 2w and orientation angle θ

are first obtained for an identified streak from the thresholded image. The values are
refined by minimizing the following function for each streak using Powell’s method
(Press et al. 1994):

f =
∑

(Ith − Iimage)
2, (2.2)

where Iimage is the intensity value for a pixel in the original image at that point
(figure 3a). The summation in (2.2) is carried out over all the pixels of the cluster
corresponding to a streak, together with six layers of pixels added to the cluster.
Figure 3(c) shows the computed intensity values plotted on the original image using
the fitted parameters.
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The velocity magnitude is v = 2L/�t , where �t is the time interval corresponding
to the shutter speed set in the camera and the velocity components are calculated
from the orientation angle θ; L = L(l, w) is the distance moved by the particle in
the time interval �t and is obtained as a function of the streak length and width
using calibration experiments described below. The position corresponding to this
velocity vector is taken to be the centroid of the streak (Xc, Yc). A similar procedure
is applied for every streak identified in an image. Only streaks with lengths in the
range 20–70 pixels are considered for analysis. The reason is that streaks longer than
70 pixels tend to overlap other streaks, while those shorter than 20 pixels result in
an inaccurate determination of the orientation angle θ . The use of different shutter
speeds gives streaks with lengths within this range at each depth in the layer. Streaks
which are cut off at the edges of an image are not considered for velocity calculation.

The analysis results from all the images are combined and the coordinate positions
for all the selected streaks are rotated by an angle θavg . This angle is determined by
averaging the angle of orientation θ for all the streaks in the selected region of the
flowing layer, and represents the orientation of the flowing layer to the horizontal.
The components cz and cy of the instantaneous velocity parallel and perpendicular
to the flow direction are determined for every streak from its orientation angle θ .
The region shown in figure 2 is then divided into bins of depth equal to the particle
diameter and length 20 mm parallel to the flowing layer. The profiles of the averaged
parallel, vx and vy , and perpendicular components of velocity are then generated by
averaging the instantaneous velocity components cx, cy over all the streaks in each
bin.

In a typical measured velocity profile, the average x-velocity vx decreases and then
starts to increase with depth in the flowing layer from the free surface, because
the velocity decreases and eventually becomes negative (owing to bed rotation) with
decreasing y. However, our technique cannot give the direction of the velocity vector.
Hence we assume all velocities below the minimum-velocity point to be negative.

The root-mean-square (r.m.s.) velocity and its components in the x- and y- directions
are calculated from the instantaneous velocities using the following equations:

ux =

√
c2
x − (cx)2, (2.3a)

uy =

√
c2
y − (cy)2, (2.3b)

u =
√

u2
x + u2

y, (2.3c)

where the overbar indicates an average over all streaks in a bin corresponding to
a particular y-coordinate. The number-density profiles are obtained from a separate
set of images at a high shutter speed (1/2000 s). Such high shutter speeds ensure
that streaks are short (� 30 pixels) and do not overlap, so that all the streaks in an
image can be used for analysis. This is required to get an accurate number count.
Images are analysed in the same manner as mentioned above, but only the centroid
positions are noted. The number density for any y is determined by counting the
number of particles in each bin. A source of inaccuracy is that particles from back
layers may also be counted, which leads to an overestimate of the number densities.
This is particularly the case for the low-number-density region near the free surface.
Further, the measurements represent densities near the wall, which are different from
those in the bulk.
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Figure 4. Calibration results for determining streak lengths. Variation in actual streak length
L with a linear sum of the length l and width w of a streak measured by image analysis;
a1 = 2.05 and a2 = 1.86 are the constants obtained by linear regression of the experimental
data. The dotted lines represent a 3% deviation in the calculation of L.

Experiments were carried out to calibrate the analysis technique. A single particle
was glued to the face plate of the cylinder on the inner side at a position close
to the periphery of the cylinder. The radial position of the particle was accurately
determined and from this the velocity of the particle can be obtained since the
angular speed of the cylinder is known. The cylinder was rotated at different angular
speeds and images of this particle are taken at different camera shutter speeds (1/30–
1/500 s). The size of the recorded region and the lighting conditions were the same as
those used for the measurements in the flowing layer. Further, the rotational speed
of the cylinder and the shutter speeds were adjusted so as to generate streaks of
three different lengths. The maximum and minimum lengths of the streaks span the
range of streak lengths considered for velocity measurements in the flowing layer. The
experiments were carried out for all the particles used in the experiments. The length
2l, width 2w, position (Xc, Yc) and orientation θ of a single streak were determined in
each case using the same analysis procedure as described earlier. The actual distance
L travelled by a particle at radial distance r (L = ωr�t) is known from the linear
velocity of the particle, ωr , and the shutter speed used, �t . A linear relation of the
following form is assumed to hold between the actual length L and the measured
length l and width w of each streak:

L = a1l + a2w. (2.4)

The constants a1 and a2 were determined by a least-squares fit to the experimental
data combined for particles of different sizes and materials. The fit yielded a1 = 2.05
and a2 = 1.86 with a standard error of about 1.1 pixels. Figure 4 shows for comparison
the measured and fitted streaks. The experimental data are well correlated by (2.4)
and indicate that the actual distance travelled by a particle depends on both the
length and the width parameters of the intensity function. The error in calculating
L is less than 3 % (figure 4) and represents the typical error in measurements of
velocities in the flowing layer.

The maximum dynamic angle of repose βm was taken to be the angle θavg by which
the data is rotated to obtain vy = 0. The static angle of repose βs was taken to be
the angle of the stationary free surface when the rotation of the cylinder, operating
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Material d (mm) ω (r.p.m.) βm (deg.) βs (deg.) q (cm2 s−1)

1 2 25.6 16.0 26.8
1 3 26.6 16.0 40.2

Stainless steel 2 3 29.1 20.1
2 6 35.7 20.1 80.4
2 9 42.8 20.1 120.6
3 3 26.3 18.4

Brass 2 3 27.8 18.3

Table 2. Experimentally determined values of the angles βm and βs and calculated
volumetric flow rate per unit width q for the different cases studied.
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Figure 5. Mean velocity profiles measured at three locations along the layer, as indicated in
the legend, for 2 mm particles with the cylinder rotated at 3 r.p.m.

under steady-flow conditions, stopped. The values of βm and βs (averaged over six
images) are reported in table 2 for all the cases studied. We also checked that the
flow was fully developed by measuring the velocity profile at two additional locations,
one 10 mm upstream and one 10 mm downstream of the layer midpoint (x = 0).
Figure 5 shows the profiles of the mean velocity at the three locations for one case
(2 mm particles in the cylinder rotated at 3 r.p.m.). The profiles are identical within
experimental error, verifying that the flow was fully developed.

3. Results and discussion
We first present the experimental results obtained for varying system parameters.

Scaling and the analysis of the experimental profiles are presented next. The rheology
of the flow is discussed in § 3.3. Finally, we compare our experimental velocity profiles
with the predictions of the models of Bonamy & Mills (2003), Aranson & Tsimring
(2002) and Pouliquen and coworkers (Jop et al. 2005, MiDi 2004).

3.1. Base data

The primary parameters varied in the experiments are the cylinder rotational speed
ω and the particle diameter d , and the results presented below are in terms of these
parameters. There is, however, a direct relation between the cylinder rotational speed
and the local volumetric flow rate per unit gap width q . A mass balance for a half-full
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Figure 6. Variation in the x-component of the mean velocity, vx , with depth y in the layer.
(a) The thick solid line denotes the experimental data for 2 mm brass particles rotated at 3 r.p.m.
The other lines denote the data for 2 mm SS balls at different rotational speeds. The thick
dotted line shows a straight line fit to the linear portion of the 9 r.p.m. profile. (b) The thick
solid line denotes the data for 1 mm SS balls rotated at 2 r.p.m. The other lines denote the
data for SS balls rotated at 3 r.p.m. The error bars denote the standard deviation over 10 sets.

Figure 7. Typical time-lapse image showing the ballistic trajectories of particles in the
low-density region (above the dashed line).

cylinder, assuming that the bulk densities in the bed and the layer are the same, yields
q = ωR2/2; the calculated values are given in table 2. Increasing the rotational speed
is thus equivalent to increasing the local flow rate.

The variation in the x-component of the mean velocity, vx , with depth y in the
layer is shown in figure 6 for different rotational speeds, particle sizes and materials
studied. The error bars denote the standard deviation over 10 different data sets. All
the measured quantities are plotted from y = 0 at the free surface of the flow down to
about 3–4 particle diameters below the point corresponding to the minimum absolute
velocity. The free surface is taken to be the level at which the measured number
density is close to zero (n < 10−3 mm−2). The profiles are linear over most of the layer
depth for all the cases studied, with an exponential decay near the base of the flowing
layer. The negative velocities correspond to particles in the rotating bed which move
in a direction opposite to that of the flowing layer. Further, the profiles tend to flatten
out near the free surface. This is a low-density region comprising saltating particles.
The ballistic trajectories in this region are clearly seen in figure 7, which is an image
of the flow taken at a low shutter speed.

The magnitude of the maximum velocity and the depth of the layer increase with
the rotational speed for a fixed particle size (figure 6a). The length of the central
linear region of the velocity profile increases with increasing rotational speed, while
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Figure 8. Variation in the y-component of the mean velocity, vy , with depth y in the flowing
layer. (a) The open symbols denote the experimental data for 2 mm SS balls. The solid symbols
denote the data for 2 mm brass particles rotated at 3 r.p.m. (b) The open symbols denote the
experimental data for SS balls for a rotational speed of 3 r.p.m. The solid symbols denote the
data for 1 mm SS balls rotated at 2 r.p.m. The error bars denote the standard deviation over
10 sets.

the length of the exponential region near the bottom of the layer is nearly constant
for all the cases considered. The shear rate γ̇ = dvx/dy corresponding to the linear
portion increases with rotational speed. The profiles for SS and brass particles are
close to each other, indicating that particle material parameters such as the coefficient
of restitution and the particle roughness have a minor effect on the flow. This is
in agreement with our earlier work (Orpe & Khakhar 2001) and that of Jain et al.
(2002) on rotating cylinders. The maximum velocity decreases and the depth of the
flowing layer increases with increasing particle diameter for a fixed rotational speed
(figure 6b). The shear rate thus decreases with increasing particle size.

Qualitatively similar velocity profiles have been reported in the literature for
different experimental systems. A linear and an exponential region of the velocity
profile was observed in rotating cylinders for various rotational speeds studied
(Bonamy et al. 2002a; Longo & Lamberti 2002; Zanuttigh & Lamberti 2002). The
trends obtained in figure 6b for varying particle size are similar to those reported by
Jain et al. (2002). The system size used in all these cases was comparable with our
experimental system. The velocity profile in the lower half of the layer resembles the
profiles obtained by Mueth et al. (2000) and Bocquet et al. (2001) for Couette flows.
In some of the studies mentioned above (Rajchenbach et al. 1995; Bonamy et al.
2002a), the flattened upper low-density region was not obtained.

The magnitude of the y-component of the mean velocity, vy , was close to zero
throughout the depth of the layer for all the cases considered (figure 8) and the
variations are within the experimental error. This confirms that the flow is nearly
unidirectional in the region of measurement. The profiles of the projected area fraction
of the particles, φ = Nπd2/4A, where N is the number of particles counted per bin
and A is the area of the bin, are shown in figure 9. The area fraction is nearly constant
over the entire layer, with a rapid drop near the free surface. There is no significant
variation in the magnitude of the area fraction (relative to the measurement error)
for the different rotational speeds and materials. The area fractions are significantly
smaller than the hexagonal-close-packed limit, φc = 0.866. Nearly constant surface
densities across the flowing layer were also observed by Rajchenbach et al. (1995),
Bonamy et al. (2001) and Jain et al. (2002).
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Figure 9. Variation in the area fraction φ with depth y in the flowing layer. (a) The open
symbols denote the experimental data for 2 mm SS balls. The solid symbols denote the data
for 2 mm brass particles rotated at 3 r.p.m. (b) The open symbols denote the experimental
data for SS balls for a rotational speed of 3 r.p.m. The solid symbols denote the data for
1 mm SS balls rotated at 2 r.p.m. The error bars denote the standard deviation over 10 sets.
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Figure 10. Variation in the components of the r.m.s. velocity with depth in the flowing layer.
The open symbols denote the experimental data for 2 mm SS balls. The solid symbols denote
the experimental data for 2 mm brass particles rotated at 3 r.p.m. The error bars denote the
standard deviation over 10 sets.

The components of the r.m.s. velocities ux and uy across the flowing layer are shown
in figures 10 and 11. In both cases, the r.m.s. velocity profiles are nearly linear over a
large portion of the layer, with a flattening near the free surface and an exponential
decay near the base of the flowing layer. The sizes of the flattened region as well
as the region of exponential decay are larger for the r.m.s. velocity profiles than the
corresponding regions for the mean velocity profiles. The r.m.s. velocities are smaller
by nearly an order of magnitude than the mean velocities. The relative error is thus
larger in this case than in the case of the mean velocities, as indicated by the error
bars. The r.m.s. velocities increase with rotational speed for a fixed particle size. The
slope of the linear region in each case is nearly independent of the rotational speed but
increases with particle diameter (i.e. dux/dy, duy/dy decrease). The r.m.s. velocities
for the brass balls are quite close to those for steel, which again indicates that the
flow behaviour is nearly independent of the material properties. The anisotropy in the
r.m.s. velocities is clearly evident from the graphs and the r.m.s. velocity component
in the flow direction is larger by about 50% than that normal to the flow direction.
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Figure 11. Variation in the components of the r.m.s. velocity with depth, in the flowing layer.
The open symbols denote the data for SS balls rotated at 3 r.p.m. The solid symbols denote
the data for 1 mm SS balls rotated at 2 r.p.m. The error bars denote the standard deviation
over 10 sets.
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Figure 12. Variation in the ratio of the r.m.s. velocity components across the flowing layer.
(a) The open symbols denote-data for 2 mm SS balls. The solid symbols denote the data for
2 mm brass particles. (b) The open symbols denote the data for SS balls rotated at 3 r.p.m.
The solid symbols denote the data for 1 mm SS balls rotated at 2 r.p.m.

A linear and a flattened region in the r.m.s. velocity profiles was also obtained by
Jain et al. (2002) in their experiments in rotating cylinders but they found the r.m.s.
velocities to be about one-third of the mean velocity near the free surface. These
values are significantly larger than the r.m.s. velocities obtained here.

The degree of anisotropy in the r.m.s. velocities across the flowing layer for all the
cases studied is shown in figure 12. The ratio ux/uy is nearly constant (≈ 1.5) across
the flowing layer and is independent of rotational speed while it decreases slightly
with an increase in the particle diameter. The data for brass and SS balls is nearly the
same. Azanza, Chevoir & Moucheront (1999) found the ratio of the r.m.s. velocity
components to be 1.45 for two-dimensional chute flows, while a ratio of 1.3 was
obtained by Bocquet et al. (2001) for Couette flows. Anisotropy in the r.m.s. velocity
components was also observed by Jain et al. (2002) for experiments with rotating
cylinders.

We may obtain the stress profiles in the flowing layer from a stress balance, taking
into account the contribution of wall friction. Assuming the flow to be steady and
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fully developed, the Cauchy equations averaged across the gap width b are

0 =
d 〈τyx〉

dy
+

1

b
τzx

∣∣b
0
+ 〈ρ〉g sinβm, (3.1a)

0 =
d 〈τyy〉

dy
− 〈ρ〉g cos βm, (3.1b)

where 〈·〉 = (1/b)
∫ b

0
· dz denotes an average across the gap. The stress at the side

walls due to friction is

τzx |0 = −τzx |b = τzzµw, (3.2)

where µw is the coefficient of wall friction. The latter is assumed to be a constant,
which may overestimate the actual value. Assuming further that the variation in the
stresses across the gap is small, that the normal stresses are isotropic (τzz = τyy) and
that the stresses vanish at the free surface we obtain

τyy = ρb cosβm

∫ 0

−y

(φ/φb) dy, (3.3a)

τyx = ρb sinβm

∫ 0

−y

(φ/φb) dy − 2µw/b

∫ 0

−y

τyy dy. (3.3b)

In the above equations φb is taken to be the constant value near the base of the flowing
layer (figure 9). The bulk density in the rotating bed is obtained as ρb = (1/2)mb/πR2b,
from the measured mass of particles in the half-filled cylinder, mb; the results are
given in table 1. The effective coefficient of friction for the particles at the base of the
layer is obtained from (3.3) as

µi =
τyx

τyy

= tan βm − µw

δe

b
, (3.4)

where δe = 2
∫ 0

−ys
τyy dy]/[ρb

∫ 0

−ys
(φ/φb) dy] is the effective layer thickness and ys is

the position of the base of the layer, which we take to be the point at which the
shear rate extrapolates to zero. Equation (3.4) is identical to one obtained by Taberlet
et al. (2003) if δe is replaced by the measured layer thickness δ. Here we obtain δe by
numerical integration of the experimental profiles to avoid the ambiguity in defining
the location of the free surface.

Equation (3.4) allows the estimation of the wall friction coefficient from
experimental data. Figure 13 shows a plot of the measured values of tan βm versus
δe/b for all the cases studied. All the data at 3 r.p.m. (open symbols), corresponding
to a fixed flow rate, fall on a straight line, which yields a wall friction coefficient of
µw = 0.09, which is a reasonable value for steel beads on a smooth surface. The data
for higher rotational speeds (solid symbols), which correspond to significantly higher
flow rates, deviate from the fitted straight line. Analysis of the data for cylinders of
different diameters and for a wider range of flow rates indicates that (3.4) holds, but
unrealistically high values of µw are obtained (µw > µi in some cases) (Khakhar,
Orpe & Hajra 2005). The physical cause for the high values of tanβm obtained here
and previously is not known. It may be because µw is dependent on velocity or
because µi is dependent on velocity and needs to be further investigated. However,
since the correction for wall friction is small over most of the layer, in the data
reported here we correct the shear stress using the value 0.09 for the wall friction
coefficient µw in all cases.
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Figure 13. Variation in the coefficient of static friction, tan βm, with the scaled effective layer
thickness δe . Open symbols, data for 3 r.p.m.; filled symbols, data for 6 and 9 r.p.m. The line
is the least-squares fit to the 3 r.p.m. data.
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Figure 14. Shear stress (τyx) profiles in the flowing layer. (a) The open symbols denote the
data for 2 mm SS balls. The filled symbols denote the data for 2 mm brass particles rotated
at 3 r.p.m. (b) The open symbols denote the data for SS balls rotated at 3 r.p.m. The filled
symbols denote the data for 1 mm SS balls rotated at 2 r.p.m.

The profiles for the shear stress are shown in figure 14. The stresses are linear across
most of the layer with a slight curvature near the free surface and a deviation from
linearity deeper in the layer due to wall friction. The linear variation results from
the nearly constant area fraction φ over most of the layer. The shear stress increases
with the angular speed (figure 14a), while the normal stress shows the opposite trend.
The reason is that βm increases with angular speed. The shear-stress profile is nearly
independent of the particle size d and the material type (figure 14b).

The components of the streaming-stress contribution to the total stress tensor are
(Campbell 1990)

τ k
yx(y) = ρ(cxcy − cx cy), (3.5a)

τ k
xx(y) = ρ(cxcx − cx cx), (3.5b)

τ k
yy(y) = ρ(cycy − cy cy), (3.5c)

where cx and cy are the components of the instantaneous velocities for all the relevant
particles and for every y-coordinate and ρ is the nearly constant layer density. The
profiles of the streaming component of the shear stress normalized by the total



Rheology of surface granular flows 17

0 0.2 0.4 0.6 0.8 1.0
τk

yx/τyx τk
yx/τyx

–40

–30

–20

–10

0

y 
(m

m
)

 3 r.p.m.
 6 r.p.m.
 9 r.p.m.

0 0.2 0.4 0.6 0.8 1.0
–40

–30

–20

–10

0

1 mm
2 mm
3 mm

(a) (b)

Figure 15. Variation in the ratio of the streaming stress τ k
yx and the total shear stress τyx with

depth y in the flowing layer. (a) The open symbols denote the data for 2 mm SS balls. The
filled circles denote the data for 2 mm brass particles rotated at 3 r.p.m. (b) The open symbols
denote the data for SS balls rotated at 3 r.p.m. The filled triangles denote the data for 1 mm
SS balls rotated at 2 r.p.m.
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Figure 16. Variation in the rescaled mean velocity with rescaled depth in the flowing layer.
The filled symbols denote the data for brass particles rotated at 3 r.p.m. The data for all sets
are shifted after scaling so as to superimpose the profiles. (a) Scaling based on the shear rate
given by (1.1). (b) Scaling based on the shear rate of Rajchenbach (2003).

shear stress are shown in figure 15. Very similar profiles are obtained for the normal
stresses. Streaming stresses are a significant component of the total stress near the
free surface and are more than 20% of the total stress in the region corresponding
roughly to the flattened portion in the r.m.s. velocity profiles. Deeper in the bed
the streaming stresses become negligibly small. This behaviour is consistent with the
observed particle trajectories (figure 7) and the density profile (figure 9).

3.2. Scaling and analysis

We rescale the velocity profiles using a characteristic velocity vC = γ̇Cd , with the
characteristic shear rate γ̇C = [g sin((βm − β)/d cosβs)]

1/2 based on (1.1), and use
the particle diameter d as the characteristic length. After rescaling, the dimensionless
profiles are shifted in the y-direction so as to superimpose the profiles. The resulting
profiles are shown in figure 16(a). All the profiles for different rotational speeds,
particle sizes and material types collapse to a single curve. The linear regions of
the profiles, in particular, superimpose very well. The scaling thus describes the
variation of the mean velocity profiles with particle diameter and local flow rate quite



18 A. V. Orpe and D. V. Khakhar

0 1 2 3 0 1 2
–25

–20

–15

–10

–5

0

y
d 1 mm (2 r.p.m.)

1 mm (3 r.p.m.)
2 mm (3 r.p.m.)
2 mm (6 r.p.m.)
2 mm (9 r.p.m.)
3 mm (3 r.p.m.)

(a) (b)

––

ux/(γ
.
Cd) uy/(γ

.
Cd)

Figure 17. Scaled profiles of the components of the r.m.s. velocity in the flowing layer. The
filled symbols denote the data for brass particles rotated at 3 r.p.m.
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Figure 18. (a) The measured average shear rate γ̇a and the shear rate γ̇c predicted from
Khakhar et al. (2001a). (b) The measured average shear rate γ̇a and the shear rate γ̇R

predicted from Rajchenbach (2003). The symbols show the experimental data for all the cases
studied. The solid lines show linear fits to the data.

well. Figure 16(b) shows the same data but rescaled by the characteristic velocity
based on the shear rate proposed by Rajchenbach (2003), γ̇R = (g sinβm/d)1/2. The
scaled profiles superimpose equally well in this case, after appropriately translating
the profiles in the y-direction. From the data available it is difficult to distinguish
between the two relations for the shear rate.

The r.m.s. velocity profiles scaled using the characteristic shear rate γ̇C and shifted
by the same distance as that for the mean velocity profiles are shown in figure 17(a).
The scaled profiles collapse to a single curve over most of the layer except for the
region near the free surface, though the relative scatter in this case is greater then
that for the mean velocity profile.

We define an average shear rate for a velocity profile, γ̇a , as the velocity gradient
obtained by fitting a straight line to the linear portion of the velocity profile. An
example of such a fit is shown in figure 6(a). We note that the magnitude of the
shear rate varies depending on the number of points included in the fitting. This
variation is, however, less than 10% when the number of points that are assumed
to lie in the ‘linear’ portion is varied. Figure 18(a) shows the measured shear rates
and the characteristic shear rate γ̇C for comparison. Although there is scatter in the
data, there is reasonable agreement between the model predictions and experiment.
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Figure 19. Profiles of the mean velocity vx across the flowing layer plotted on a semi-log
scale. The solid lines show exponential fits to the linear portions of the profiles. (a) The open
symbols denote the data for 2 mm SS balls. The filled circles denote the data for 2 mm brass
particles rotated at 3 r.p.m. (b) The open symbols denote the data for SS balls rotated at
3 r.p.m. The filled triangles denote the data for 1 mm SS balls rotated at 2 r.p.m.

A least-squares fit gives c = 0.56, which is different from the value c ≈ 1.5 estimated
by Orpe & Khakhar (2001). The latter value was based on shear rates calculated
assuming a linear velocity profile across the entire flowing layer. The velocity profiles
are actually linear only in the central region of the layer and the shear rates are lower
near the free surface and the bed. The shear rates calculated by Orpe & Khakhar
(2001) are, thus, lower than the values corresponding to the central linear part, which
results in a higher value for c.

The average shear rate γ̇a is also proportional to the shear rate γ̇R proposed by
Rajchenbach (2003), as shown in figure 18(b). However, a linear fit gives a significant
negative intercept, with γ̇a = 1.26(γ̇R − 16.9). This comparison indicates that γ̇C may
give a better description of the flow than γ̇R .

A semi-log plot of the velocity profile indicates that the exponential region of the
velocity profile spans 3–4 particle diameters (figure 19). We fit straight lines to this
data to obtain the characteristic decay length λ, defined by

vx = v0e
−y/λ, (3.6)

where v0 is a constant of proportionality. The variation in the characteristic length λ
with the particle diameter d for the different cases studied is shown in figure 20(a).
The values of λ depend on the particle size d , but are nearly independent of the
rotational speed and material type. A linear fit to the data yields λ/d = 1.1 ± 0.2.
This result indicates a relatively sharp decay of the velocity with depth in the bed
since the characteristic length is just a little more than one particle diameter. A linear
variation in the characteristic decay length with particle diameter was obtained by
Komatsu et al. (2001) for the exponential region in heap flow. A significantly larger
characteristic length (10d) was obtained by Mohan et al. (1997) for dense flows in a
vertical channel.

An exponential decay is also found for the portion of the r.m.s. velocities near
the base of the layer. A plot of the characteristic length versus the particle diameter
obtained from fits to the r.m.s. velocity u is shown in figure 20(b). A linear fit to the
data yields λ/d = 1.7 ± 0.3. Thus the r.m.s. velocity decays slightly more slowly with
depth than the mean velocity.
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Figure 20. Variation in the characteristic length λ in an exponential fit vs. particle diameter
d for (a) the mean velocity profile, (b) the r.m.s. velocity profile.
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Figure 21. Profiles of the mean velocity vx , the r.m.s. velocity u, the area fraction (φ), the
shear rate γ̇ and the shear stress τyx in the flowing layer for 2 mm SS balls rotated at 6 r.p.m.
The dashed line denotes the transition depth yc .

3.3. Rheology

The variations in the measured quantities with depth in the layer for one case are
shown side by side in figure 21 to give an overall qualitative view of the rheology. The
shear-rate profile, obtained by numerical differentiation of the mean velocity profile
(i.e. γ̇ (y) = dvx/dy), is shown in figure 21(d). For all the cases studied, the shear
rate increases to a maximum with increasing depth and then decreases as the fixed
bed is approached. We note that a relatively smooth curve is obtained as a result
of averaging with a bin size equal to the particle diameter. An oscillating shear-rate
profile is obtained, as reported in previous works (Mueth et al. 2000; Mueth 2003 Hill,
Gioia & Tota 2003). if a smaller bin size is used. The fluctuations in the shear-rate
profile arise from the magnification of errors resulting from taking a derivative of
the velocity-profile data. The fluctuations are larger for higher rotational speeds and
smaller particles. The results indicate that the velocity profile is not linear anywhere
in the flowing layer, although the region around the maximum may be approximated
to be linear. The shear rate decreases to a small value near the free surface.

The graphs in figure 21 indicate that on the basis of its rheological behaviour, the
layer can be considered to comprise two regions with different flow characteristics.
Above a critical depth yc, corresponding to the depth of the shear-rate maximum,
the shear stress increases with shear rate. However, in the region below yc the trend
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Figure 22. Profiles of the mean velocity vx , the r.m.s. velocity u, the area fraction φ, the shear
rate γ̇ and the shear stress τyx in the flowing layer for 2 mm SS balls at different rotational
speeds. The horizontal lines denote the transition depth for each rotational speed.
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Figure 23. Profiles of the mean velocity vx , the r.m.s. velocity u, the area fraction φ, the
shear rate γ̇ and the shear stress τyx in the flowing layer for different diameter SS balls at
3 r.p.m. The horizontal lines denote the transition depth for each particle size.

is reversed and the shear stress increases while the shear rate decreases. There also
appears to be a transition in the r.m.s. velocity at yc: above yc the profile is nearly
flat, whereas it decreases with depth below yc. Similar results are obtained for all
cases studied.

Figure 22 shows, for comparison, profiles for 2 mm particles and various cylinder
rotational speeds. All graphs for a particular rotational speed are shifted along the
y-axis so that the area-fraction profiles are superimposed. This ensures that the free
surface in all cases is located at the same y-position, so that depths may be compared.
The transition in the flow is seen in all the cases considered and the data indicate
that yc increases with rotational speed. Figure 23 shows, for comparison, profiles for
different-diameter particles rotated at 3 r.p.m. In this case the depth is rescaled by
the particle diameter before the graphs are shifted to superimpose the area-fraction
profiles. The results indicate that the scaled depth decreases with increasing particle
diameter. Finally, figure 24 shows data for 3 mm particles for two values of the gap
width b. Although the mean velocity and r.m.s. velocity profiles are slightly different
for the two gaps, the transition depth does not depend on the gap width.

Evidence for transition in the flow is also seen in the velocity distributions. Figure 25
shows the velocity distributions at different locations in the layer for 2 mm particles
rotated at 3 r.p.m. The distributions vary significantly with depth in the layer. The
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Figure 25. Velocity distributions at different depths in the layer for 2 mm SS balls rotated
at 3 r.p.m. The thick solid line with filled circles represents the data at the transition point.
(a), (b) The region at and above the transition point. (c), (d) The region at and below the
transition point.

cy-distribution is Gaussian for all points above the transition point, y � yc (figure 25b).
Below the transition point, y < yc, it gradually evolves to a Poisson distribution with
increasing depth in the layer (figure 25d). The cx-distribution is Gaussian above
the transition point (figure 25a). However, at and below the transition point the
behaviour is complex and bimodal distributions are obtained at varying locations in
the layer (figure 25c). Similar behaviour is obtained for all the cases studied. The
cy-distributions below the transition point are qualitatively similar to the distributions
obtained by Mueth (2003) for dense Couette flow.
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Figure 27. Variation of the r.m.s. velocity u with the shear rate γ̇ in the the flowing layer.
Dotted lines show least-squares fits to the linear portions of the graphs. (a) Particles of different
diameter and a rotational speed of 3 r.p.m. The solid symbols denote the data for 2 mm brass
particles. (b) 2 mm particles at different rotational speeds.

In the region below the transition depth yc, the decrease in shear rate with depth,
accompanied by an increase in shear stress with depth, implies a sharp increase in
the apparent viscosity, defined as η = τyx/γ̇ . Figure 26 shows the variation in the
apparent viscosity η with the r.m.s. velocity u. The granular temperature is T = u2;
thus the variation in figure 26 may be considered to be analogous to the variation of
viscosity with temperature in molecular fluids. The viscosity varies by more than three
orders of magnitude and all the data show qualitatively similar behaviour. Near the
free surface the viscosity is low and increases at constant u, essentially owing to the
increase in the volume fraction of solids. Below the transition point there is a gradual
increase in viscosity with depth corresponding to a decreasing u. The variation in
η with u in the region just below the transition in all cases is power-law, with an
exponent of about −1.5. At lower values of u the curves turn upward and the rate of
increase in η appears to become higher.

Figure 27 shows the variation in the r.m.s. velocity u with shear rate γ̇ . There
is a power-law dependence of the two in the region below the transition to the
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d (mm) ω (r.p.m.) δf (mm) δs (mm)

1 3 6 11
2 3 7 16
2 6 11 16
2 9 14 15
3 3 7 20

Table 3. Measured thicknesses δf and δs of the fluid-like and solid-like layers for the
different cases.

high-density region. The exponent α is independent of the particle diameter
(figure 27a) but appears to decrease systematically with increasing r.p.m., ranging
from α = 1 for low rotational speeds to α = 0.5 for 9 r.p.m. For α = 1 we have
u ∝ γ̇ , which is consistent with a physical picture according to which fluctuations
should depend on local relative motion. A power-law variation between the r.m.s.
velocity and the shear rate have been obtained previously by Bocquet et al. (2001)
and Mueth (2003) for dense Couette flows. The value of the exponent reported by
them is around α = 0.5. Azanza et al. (1999) found α = 1 for rapid flows.

The above results indicate the presence of two regimes in the flowing layer, with
a sharp transition point. In the upper region near the free surface the behaviour is
fluid-like and the velocity distributions are Maxwellian. Below the transition point
the material appears to be an amorphous soft solid, increasing in strength with
depth in the layer. The transition to this solid-like regime occurs at a relatively large
r.m.s. velocity (≈ 0.1 m s−1). Qualitatively similar behaviour is obtained for different
particles and operating speeds.

We conjecture that the sharp transition occurs because of the formation of a
percolated network of particles in extended contact with each other. This is in
contrast with the fluid-like regime where the particles interact through collisions. The
contact network coexists with fluid-like domains and the fraction of particles which
are part of the network increases with depth. This picture for the region below the
transition point is broadly consistent with recent measurements of Bonamy et al.
(2002b), in which flowing clusters were identified, as well as with non-local models
based on the coexistence of particle chains and fluid-like material (Mills et al. 1999;
Bonamy & Mills 2003).

Table 3 gives the thickness of the fluid-like (δf ) and solid-like (δs) regions obtained
from the data in figures 22 and 23. The data indicates that δf is independent of
the particle diameter but depends on the rotational speed (i.e. the local flow rate
q). In contrast, δs is independent of the r.p.m. but proportional to the particle
diameter (δs ≈ 6.7 + 4.5d mm). The latter result is consistent with the finding that
the characteristic length λ for exponential decay of the velocity is proportional to
diameter but independent of rotational speed. The physical picture that emerges is
that the solid-like layer is formed first, its maximum thickness being determined by
the particle diameter. When the local flow rate exceeds some critical value determined
by the maximum solid-like-layer thickness, the excess goes to form the liquid-like
layer. The data of Courrech-DuPont et al. (2005) for transient flow in a rotating
cylinder perhaps correspond to flow rates below the critical value and hence only the
exponential region is seen. We note that a different scaling for the layer thickness
is obtained if a macroscopic viewpoint is considered in which the velocity profile is
assumed to be linear and the region of exponential decay of the velocity is neglected.
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Figure 28. Profiles of the mean velocity vx in the flowing layer. The solid lines show the
predictions of the model of Bonamy & Mills (2003). (a) The symbols denote the data for
2 mm SS balls. (b) The symbols denote the data for SS balls rotated at 3 r.p.m.

In this case, based on the characteristic shear rate for the layer given by (1.1), we get
δ ∝ d1/4, which is verified in figure 18.

3.4. Comparison with theory

Bonamy & Mills (2003) proposed a non-local model for the surface flow of granular
material, based on an earlier work by Mills et al. (1999). The model regards the
flowing granular medium as a network of transient particle chains immersed in an
assembly of particles behaving as a viscous Newtonian fluid. The stresses are then
propagated through these chains in a non-local manner. The total stress is expressed
as a linear combination of Coulombic frictional stresses, viscous stresses and stresses
due to the embedded chains.

The model equations, simplified for the case of surface flows in rotating cylinders
for low rotational speeds ω, when inertial stresses can be neglected, yield an analytical
expression for the profile of the velocity component vx (Bonamy & Mills 2003):

vx(y) �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
λ

2

)
γ̇ e2δ/λe2y/λ −

(
ω

2R

)
(y2 + R2), y ∈ (−R, −δ), (3.7a)

γ̇

(
y + δ +

λ

2

)
−

(
ω

2R

)
(y2 + R2), y ∈ (−δ, 0), (3.7b)

where λ is a function of the characteristic correlation length of the transient chains.
The shear rate γ̇ and the characteristic length λ are parameters of the model. Using
the mass-balance equation at the centre of the cylinder gives the following expression
for the layer thickness:

δ � R

(
4ω

3γ̇

)1/2

. (3.8)

Equations (3.4) and (3.8) are used to calculate the velocity profiles across the flowing
layer. The shear rate in each case is taken to be the value obtained by fitting a straight
line to the linear part of the experimental profile (γ̇a , figure 18). The values of the
correlation length are found to be related to the particle diameter by λ/d = 4 for all
cases.

The predicted and experimental profiles are shown in figure 28. The model predicts
the exponential and the linear part of the velocity very well for all rotational speeds
and particle sizes, but it does not predict the flattening of the profile near the
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free surface. For the case of of 3 mm balls, the layer thickness calculated from
(3.8) overpredicts the experimental layer thickness, resulting in a shift of the predicted
profile (the dashed line in figure 28b). The reason for this mismatch is the experimental
difficulty in correctly identifying the location of the free surface. If for this case we
use the layer thickness value obtained from the experimental velocity profile, a good
fit is obtained.

Aranson & Tsimring (2002) proposed an order-parameter description for the
fluidization transition in granular flows. The order parameter specifies the fraction of
the solid and fluid parts of the stress tensor and is related to the number of particles
in contact with a given particle, on average (the coordination number). The dynamics
of the order parameter p are assumed to be governed by the Ginzburg–Landau
equation, which reduces in the case of a steady fully developed unidirectional flow to

0 = D
d2p

dy2
− F (p, µ), (3.9)

where D is the characteristic diffusion coefficient for p. F (p, µ) is the derivative of
the potential energy density and is given by

F (p, µ) = (p − 1){p2 − 2p∗p + p2
∗ exp[−A(µ2 − µ2

∗)]} (3.10)

where µ = τyx/τyy and the quantities with asterisks are model parameters. Volfson,
Tsimring & Aranson (2003) found p∗ = 0.6, A = 25 and µ∗ = 0.26 from two-
dimensional discrete-element simulations for D = 2. The fluid part τ f

yx of the total
shear stress τyx was obtained from simulations in terms of the order parameter as

τ f
yx = (1 − p)2.5τyx = η

dvx

dy
, (3.11)

where η is the viscosity. Simulations for two-dimensional systems indicate η = 12.
In the above equations (3.9)–(3.11) all quantities are made dimensionless using
appropriate combinations of m, g and d .

We obtain the profile of the order parameter in the layer by numerical solution
of (3.9) using a shooting method with the experimentally obtained profile for the
local friction coefficient µ(y) as an input. The free surface is assumed to be a no-flux
boundary for the order parameter (Ddp/dy = 0 at y = 0) and pure solid (p = 1) is
assumed far from the free surface (y = δA � 1). The profiles are independent of the
domain depth δA when it is large enough. The shear-rate (γ̇ = dvx/dy) profile is then
calculated from (3.11) using the experimentally obtained shear-stress profile.

The computed shear-rate profiles are shown, together with the experimentally
measured profiles for comparison, in figure 29. This provides a more stringent test than
matching the model to the measured velocity profiles. Predictions of the shear-rate
profile using the parameters from two-dimensional simulations give only qualitative
agreement with the experimental profiles. The results of one such calculation for
2mm particles rotated at 3 r.p.m. is shown in figure 29 (long-dashed line) using the
values given above for A, D and η, but taking µ∗ = 0.4. The latter was necessary
since no solution satisfying the boundary conditions was obtained for µ∗ = 0.26
for the particular experimental profile for µ(y) used. We found excellent quantitative
agreement between the model and the experimental results using A = 5 and D = 2
for four of the cases and A = 10 and D = 2 for one case, as shown in figure 29.
However, different values of µ∗ and η are required to get a good fit and these are
given in table 4. We found that µ∗ essentially determines the depth of the layer and
thus it was adjusted to match the experimental and theoretical depths. The viscosity η
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Figure 29. The shear-rate profiles predicted by the model of Aranson & Tsimring (2002)
(dashed lines) compared with the measured shear-rate profiles. (a) The symbols denote the
data for 2 mm SS balls. (b) The symbols denote the data for SS balls rotated at 3 r.p.m.

d (mm) ω (r.p.m.) A µ∗ η µi

1 3 5 0.36 0.97 0.36
2 3 5 0.40 0.85 0.34
2 6 5 0.57 1.74 0.52
2 9 5 0.81 2.77 0.77
3 3 10 0.41 0.84 0.37

Table 4. Values of fitting constants for the model of Aranson & Tsimring (2002), for the case
of stainless steel. The values of the effective coefficient of friction at the base of the layer,
µi = µ(ys), are also given.

is a proportionality factor and we calculated it as the ratio of the maximum computed
shear rate to the maximum experimental shear rate for each profile. Once A and D are
fixed, the calculated values of µ∗ and η are thus uniquely determined. The parameter
A did not significantly affect the shape of the profiles when varied over a significant
range (A ∈ (5, 25)) but determined the range of µ∗ for which solutions satisfying the
boundary conditions could be obtained. Similarly, changing D over narrow ranges
close to D = 2 did not change the profiles significantly but strongly affected the
range of µ∗ for which solutions could be obtained. The graph of the order-parameter
variation with depth for all the cases is shown in figure 30. Note that, according to
the model, the material is not a pure fluid (p > 0) at the free surface (y = 0).

The values of the parameter µ∗ correlate well with the effective friction coefficient
µi , also given in table 4. Thus µ∗ depends on the frictional characteristics of the
material as may be expected. The viscosity is nearly constant for different particle sizes
and increases with rotational speed. The latter may be expected given the increase in
the granular temperature with rotational speed.

Finally, we compare the experimental results obtained with the rheological model
of Pouliquen and coworkers, (1.2). A direct comparison is possible in this case since µ

and I can be estimated from the experimental data. Figure 31(a) shows the variation
in the local coefficient of friction µ with the scaled shear rate I for the different
data sets. The data sets are truncated and only the points in the dense flow region
below the shear-rate maximum are shown. The data for the lower rotational speeds
are all clustered toegther while the values of µ for the higher rotational speeds are
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Figure 31. (a) Variation in the effective friction coefficient µ with scaled shear rate I for
different particle sizes and cylinder rotational speeds, as indicated in the legend. The solid
symbols correspond to 2 mm brass balls and a rotational speed of 3 r.p.m. (b) The increase in
the coefficient of friction �µ with scaled shear rate I for 2 mm particles. The solid line is a fit
of (1.2) and the dashed line gives predictions of the same equation but using the parameters
obtained by Jop et al. (2005).

significantly higher. This follows from the higher values of µi for the higher-r.p.m.
data, seen in figure 13. We take µs to be the value of µ(I ) extrapolated to I = 0.
The range of µs for the low-r.p.m. data corresponds to angles ranging from 17 to
20 deg., which reflects the error in the estimation of µ. The values are in reasonable
agreement with the results of Jop et al. (2005). Figure 31(b) shows the variation in
�µ = (µ−µs) with the scaled shear rate I for 2 mm particles and for different cyinder
rotational speeds (3, 6 and 9 r.p.m.). The collapse of the data is reasonable, and the
solid line is a fit to all the sets combined. The fit yields �µ = µ2 − µs = 0.29 and
I0 = 0.49. The values reported by Jop et al. (2005) are �µ = 0.261 and I0 = 0.279,
and a plot of the model using these values is shown in figure 31(b) (dashed line).
The difference between the two is not very large considering the different materials
used here. Fits of the model gave slightly different model parameter values for 1 mm
particles (�µ = 0.18, I0 = 0.48) and 3 mm particles (�µ = 0.20, I0 = 0.43), but only
one set of data was available for fitting in each case.
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4. Conclusions
An experimental study of surface flow in quasi-two-dimensional rotating cylinders

was carried out using streakline photography. Experiments were performed for a wide
range of rotational speeds and particle sizes. The mean-velocity profiles are linear
over most of the layer depth in all cases, with an exponential decay near the base
of the flowing layer and a flattened region near the free surface. The r.m.s. velocities
are nearly constant in a region near the free surface; then there is a linear decrease
over part of the layer and an exponential decay into the bed. The assumption of
a linear velocity profile is thus only an approximation to the flow, but it is useful
for describing the flow in a macroscopic sense as given by (1.1). Further, the r.m.s.
velocities show a distinct anisotropy, the component in the flow direction being larger
by a factor of about 1.5 than that perpendicular to the flow direction. The number
densities are nearly constant across the flowing layer with a sharp decrease near the
free surface. The shear and the normal stresses increase linearly with the depth of
the flowing layer initially, but the shear stress deviates from linearity due to wall
friction. The streaming stresses are found to be significant in the region near the free
surface. The experimental velocity profiles reported here are broadly similar to those
in previous works; however, a wider range of system parameters has been explored
in this work.

The experimental data was analysed in several ways. A simple scaling is found to
work very well. The mean velocity profiles for different cases scaled using the shear
rate from Orpe & Khakhar (2001) and the particle diameter collapse to a single curve.
A similar scaling works well for the r.m.s. velocity except for the region near the free
surface. The shear rate obtained from a least-squares fit of the linear portion of the
mean velocity profile is reasonably predicted by the model shear rate (1.1) but with
a different value for the empirical constant c. For the model to be more useful, wall
effects need to be factored into the model parameters c, βs, βm. The mean-velocity and
r.m.s.-velocity profiles near the base of the layer are well described by an exponential
function of the form exp(−y/λ), and the characteristic decay length λ is proportional
to the particle diameter d in both cases, with λ ≈ 1.1d for the mean velocity and
λ ≈ 1.7d for the r.m.s. velocity. Thus the r.m.s. velocity decays more slowly than the
mean velocity.

The shear-rate profile obtained by numerically differentiating the mean-velocity
profile data indicates that the shear-rate is not constant anywhere in the layer but
increases to a maximum and then decreases to zero with depth in the layer. A
transition in the r.m.s. profile occurs at the same depth as the shear-rate maximum:
above the transition depth the r.m.s. velocity is nearly constant whereas below the
transition depth it decreases with depth. Evidence of a transition is also seen in
the variation of the velocity distributions with depth: above the transition point the
distributions are Gaussian and below the transition point the velocity distributions
gradually approach a Poisson distribution.

The rheology of the flow is characterised in terms of the variation in the apparent
viscosity with the r.m.s. velocity. The curves indicate a relatively sharp transition at
the shear-rate maximum, and in the region below this point the apparent viscosity
varies as η ∼ u−1.5. The transition observed in the measurements appears to be a
percolation type of transition, in which there is an increasing fraction of particles
below the transition depth which are confined due to the formation of a network of
particles in extended contact with each other. From the viewpoint of rheology, the
flow comprises two layers, an upper low-viscosity layer with a nearly constant r.m.s.
velocity and a lower layer of increasing viscosity with a decreasing r.m.s. velocity.
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The thickness of the upper layer depends on the local flow rate but is independent of
the particle diameter. In contrast, the lower layer thickness depends on the particle
diameter but is independent of the flow rate. Thus after establishment of the lower
layer any further increase in the local flow rate has the result that material passes
through the upper layer. The rheological characteristics of the two layers are different.

The predictions of both models for the mean velocity match the experimental
velocity profiles reasonably well. The model of Bonamy & Mills (2003) requires
only two parameters, the shear rate, which can be independently obtained, and the
characteristic length, which is found to be related in a simple way to the particle
diameter (λ = 4d). This model, however, does not describe the low-density region near
the free surface. The model of Aranson & Tsimring (2002) describes the entire velocity
profile; however, experimental methods for independently estimating the parameter
values need to be devised. A comparison of the predictions of the rheological model
proposed by Pouliquen (Jop et al. 2005) with the experimental data also shows
reasonable agreement when the increase in friction coeffcient with shear rate is
considered. However, the coefficient of friction is found to be significantly higher
at high local flow rates (corresponding to high rotational speeds), which is not in
agreement with the model. The models considered show promise for prediction of the
mean-velocity profile and the effective friction coefficient. More detailed rheological
models are required for predicting r.m.s. velocities and velocity distributions which
are important for transport.

The results presented in this paper give a reasonably detailed picture of the rheology
of surface granular flows in quasi-two-dimensional systems. Although the results may
be expected to be valid in qualitative terms for three-dimensional systems, wall effects
cause significant quantitative differences. The walls impose two effects: one is side-wall
friction, which is accounted for approximately in this work, and the second is ordering
by the steric effects of the side walls. The measurements of Courrech-DuPont et al.
(2005) indicate that wall friction reduces the velocity at the side wall by 20 %–30 %
compared to that at the middle of the gap. Our preliminary results indicate that the
effects of ordering may be larger: the mean velocity in long cylinders is about half
that for a comparable quasi-two-dimensional system. Thus the ordering appears to
reduce the effective viscosity of the system. Modelling such wall effects remains a
challenge.
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The computer program for the calculations in figures 29 and 30 was provided by I.
Aranson, and we are grateful for his help. This paper was written while one of us
(D.V. K.) was visiting Institut Henri Poincaré and the financial support of CNRS
during the stay is gratefully acknowledged.
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